Pilong LI, Ph.D.

Principal Investigator

1996-2000 B.S. Beijing University

2000-2002 M.S.     Hong Kong University of Science and Technology

2002-2009 Ph.D.   University of Texas Southwestern Medical Center

2009-2010 Postdoc   University of Texas Southwestern Medical Center

2010-2015      Postdoc      University of Pennsylvania

2016-present     Principal Investigator   Tsinghua University



Research interest

Eukaryotic cells contain numerous important membrane-less 3D micron-sized organelles. The mechanisms of their formation are elusive. Previously we discovered that multivalent proteins and their multivalent ligands (proteins or RNAs) can “liquid-liquid demixing” phase transition and generate a protein-rich sticky liquid phase floating in ambient solution. The physical properties of the second phase are very similar to those of some of the membrane-less organelles. Multivalent proteins and RNAs are prevalent in the cell, especially in these membrane-less organelles. So multivalence-driven “liquid-liquid demixing” phase transition might be one important mechanism for the assembly of the membrane-less organelles. Cells can regulate the potential to phase transition via various post-transitional modifications. My lab is dedicated to elucidate the roles of phase transition in many aspects of cell biology, in which membrane-less organelles are involved.

In addition, the macroscopic phase transition is the manifestation of microscopic molecular interaction. As such, phase transition can serve as readout of molecular interactions. We are developing “liquid-liquid demixing” phase transition based biochemical assays for investigation arbitrary molecular interactions in vitro and in vivo.


Selected publications

Wang L#, Hu M#, Zuo M Q, Zhao J, Wu D, Huang L, Wen Y, Li Y, Chen P, Bao X, Dong M Q, Li G*, and Li P* (2020). Rett syndrome-causing mutations compromise MeCP2-mediated liquid-liquid phase separation of chromatin. Cell research. online.

Fang X#, Wang L#, Ishikawa R#, Li Y, Fiedler M, Liu F, Calder G, Rowan B, Weigel D, Li P*, and Dean C* (2019). Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature, 569(7755): 265-269.

Gao Y#, Pei G#, Li D#, Li R, Shao Y, Zhang Q C, and Li P* (2019). Multivalent m(6)A motifs promote phase separation of YTHDF proteins. Cell research, 29(9): 767-769.

Wang L#, Gao Y#, Zheng X#, Liu C, Dong S, Li R, Zhang G, Wei Y, Qu H, Li Y, Allis C D, Li G, Li H*, and Li P* (2019). Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism. Molecular cell, 76(4): 646-659.

Sun D#, Wu R#, Zheng J, Li P*, and Yu L*  (2018). Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell research, 28(4): 405-415.

Li P#, Banjade S#, Cheng H C#, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth J V, King D S, Banani S F, Russo P S, Jiang Q X, Nixon B T, and Rosen M K* (2012). Phase transitions in the assembly of multivalent signalling proteins. Nature, 483(7389): 336-340.

#: Co-first author;    *: Corresponding authors

Contact information


E-mail: plli_lab@biomed.tsinghua.edu.cn